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Unitary Operator of suq(n)-Covariant
Oscillator Algebra

W.-S. Chung-
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The unitary operator afug(n)-covariant oscillator algebra is constructed and two types
of g-coherent states are obtained explicitly.
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Since theg-deformation of a single-mode oscillator algebra (Arik and Coon,
1976; Biedenharn, 1989; Macfarlane, 1989) was known, the multimode extension
has attracted much interest. The development of differential calculus in noncom-
mutative (quantized) spaces enabled us to extend the single-grodeillator
algebra into the multimode case (Pusz and Woronowicz, 1989). The multimode
g-oscillator algebra was shown to be covariant under some quantum groups such
asglq(n), sly(n), suy(n), and so on.

In this paper, we deal with th&u,(n)-covariant oscillator algebra and con-
struct its unitary operator. We use it to present two typeg-obherent states.
One is theg-analogue of the Glauber-type coherent states and the other of the
Perelomov-type.

Thesug(n)-covariant oscillator algebra is defined by

aa; =qaa (<j)
a'al =q'afa’ (i< j)

aal =qala (i # ),

i—1
ag =1+0d’aa + (@ -1))_ aak,
k=1
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[Ni!a;r] =8ijaJT,
[Ni, a;] = —dijay, 1)

where the deformation parametgis assumed to be real. Algebra (1) is invariant
under the hermitian conjugation, and eq%can be interpreted as the conjugation
operator ofg; andN; is hermitian. The proof afu,(n)-covariance of this algebra
and its Fock representation is given in Jaganna#ta (1992). Using the Fock
representation given in Jagannattedral. (1992), the relation between number
operators and step operators is given by

ala = q2oi NN, )
where theg-number is defined by

q2x_1
[X] = -1

Using relation (2), the forth relation can be rewritten as

i—1
[a,a]=]] Q. 3)
k=1
where the scale operatQy is defined by
Q = ™. (4)
Let us introduce two types af-deformed exponential functions as follows:
oo Xn
Z(X) = PRTI
%) = 2

o0 qn(n—1)xn

Eqe(X) = , (5)
K ; [n]!
where twoqg-deformed exponential functions satisfy
Ep(X) €g2(—x) = 1. (6)

By use of the definition of thg-exponential function and relation (3), we have the
following identity:

i—1
ep(ta)a = (%T +t]] Qk> ep(ta). ()
k=1

If LR = g°RL, we have
&2(R) &2(L) = ez(R+ L). (8)
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Using property (8), Eq. (7) can be rewritten as

i1
ep(ta) ep(ral) = ep(ra) ep (rt I Qk) eg2(ta). 9)
k=1

Now, we will find out the unitary operator for algebra (1). Some properties
of g-exponential functions enable us to determine the correct form of the unitary
operator:

U(w) = Un(WN)Un-1(WN-1) - - - Uz(Wy), (10)
where

i—1
Uiwi) = ;" <|wi 2T Qk> Eqe(Wia) ez (—Wia) (11)
k=1

andw; andw; are commuting variables (ordinary complex variables). It can be
easily verified that the operatbr(w) defined in Eq. (10) is unitary,

UWw)UTw) = Uufwuw) =1 (12)
Indeed, letny, ..., ny) be the system of eigenstates of the number operators
obeying

Nilng, ..., NN) =NjNg, ..., NN). (13)

SinceaiT (ora) plays arole of raising (or lowering) operator, relation (2) gives the
matrix representation af anda;:

aiT|n1, ..., hN) = qzikfl”k,/[ni +1]ing, ..., Niy1, ..., NN,

i—1
ailng, ..., nn) = g=="/[nilIng, ..., NiZg, ..., NN, (14)
We determine the matrix coefficients of the unitary operbtow):
nrjll”nr)N =(nyg..., nN|UT(—W1, . —WN)|n;_, R n/N)

= =Ny, ..., nulUf (~wy) I, . )

s (n®, . @O (—wo)in@, .. n@)
--(n(lN’l), GO (W) ing, i), (15)
where
(Tt = (g, ..., U (=wi) Iy, ..., i)

[T &5 (i)

j#
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(—)”{Win{ w g (0 =L’ )Ykt M

VIn][n]!

_ , 2(14ni -y nk)
% 2¢0 (q—an, q—2ni .. q—) . (16)

T (- g w2

Here, the symbol & denotes the basic hypergeometric function (Gasper and
Rhaman, 1990)

00 : 2 b; 2 _1k —k(k—-1)
200(a, i) = 3 (@ 9k (?Z]z)'kéz)k) g xk (17)

where the Pochhammegrsymbol (org-shifted factorial) is defined by
(@ 0%k =(1-a)(l-0g%) - (1-ag™? (18)

The function 2 in EqQ. (16) is called the Charlig-polynomial (Nikiforovet al,,
1985) because, fogq = 1, it is identical to the ordinary Charlier polynomials
(Granovskii and Zhedanov, 1986) In the classical limit-¢ 1) the transition

”N
..... n
can be regarded as tlgeanalogue of the transition coefficient. At this stage the

physical meaning af-transition coefficients in unclear.

From formula (14), it is possible to obtain expressions for the two typgs of
coherent states. One is theanalogue of Glauber-type coherent state and another
g-analogue of Perelomov-type coherent state. Gfanalogue of Glauber-type
coherent state is defined by

ai|le ~-~1Wn) :Wi|qW11 -~'1qu711Wi1 "'le'I)' (19)

In this case, thg-coherent state is not a coherent state because it is not a coherent
state, which implies that it is not an eigenstate of annihilation operator. It comes
from the fact that we adopted the ordinary complex variables as coherent variables
and thaig; anda,-T do not commute among themselves.

From this we find that it has the explicit form

W) = UT(=wa, ..., —w,)|0)

n1

[H e }Z e

N1, ..., Np). (20)

It can be easily checked that the abayeoherent states are normalized:

(W1, ..., WN[Wg,...,WyN) =1 (21)
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The Perelomov-type coherent state is defined as the vacuum for the shifted
g-annihilation operator

bi|lwy,...,wy) =0, (22)
whereb; is unitary transform o&;;
b =UaUT, (23)
whereb; is the unitary transform od; : From this we obtain

00

— n _ k
W) =UWa, ..., wp)[0) = Y (H eq21/2(|wk|2q22'—1“')>
ny,...,Nn \k=1
o (qnflwl)nl (QHWZ)n2 - (gWh—1) " twy
VIng]t- - [np]!
From Egs. (20) and (24), we see the difference between the Glauber-type
and Perelomov-typg-coherent states. The difference results from the fact that in

the g-analogue of the unitary operator, the operaigw) andU f(—w) are very
different:

Ny, ...,Np).  (24)

Uw) # UT(—w). (25)

Therefore, these operators generate different sheavgsatierent states.
We recall that the eigenfunction problem fpiposition operator satisfying

Xy =a D@ +ay =xy (26)

generates thg-Hermite polynomials. Then, adj-position operators are commut-
ing among themselves:

[Xi, Xj] =0. (27)

Let us expand) with respect to number eigenstate of algebra (1):

oo

1//. = Cnl,...,nN (X11 IR ) XN)|n17 R ] XN> (28)
ny NN

and write the expansion coefficients in the form

Cnl, Ceey nN(X]_, ey XN) = Co(Xl, . XN)Pnl,...,nN (X]_, Ceey XN). (29)

v [ni + 1] Pnl ..... Nig1,..NN + AV [ni] Pnl,...,ni,l,...,nN =X Pnl,nz,...,nN (30)
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withinitial condition Py o, o = 1. Equation (30) shows that thevariable function
Pn,...ny IS Separable:

Pn1 ..... nN — 1_[ P|(Xi)~ (31)

Inserting Eq. (31) into Eq. (30) we have

VIni +1]Po1 + VNP1 = x P (32)

The solution of Eqg. (31) depends upon the valugofvhenq > 1, it takes the
form

RL(x) = (562 - 1 1), @)

1
V(@%ag?),
whereh,(x | g°) is g-Hermite polynomial studied by Askey (1989). Wher 0
g < 1, it takes the form

ROX) =~ (50— 0 1), (34)
(0% 92,

whereH,(x | ) is called the continuoug-Hermite polynomial (Askey and Is-
mail, 1983).

We now consider the eigenvalue problem for the shiffqubsition operator.
Since the number operator is not changed under the unitary transformation, the
shiftedq-position operator obeys

X = =i Ne(y + b = x 9. (35)

Like Eq. (29), we can expangl with repect to the number eigenstates as follows:

o0

U= > Copny(a o Xn)INg, . XN) (36)

and write the expansion coefficients in the form
énly...’nN (X]_, . XN) == C~0(X1, ey XN)ﬁnl ..... nN(le ey XN)' (37)

Similarly we can factorizef’nl,,,,,nN (X, ..., xn) as follows

N
lSnl,...,nN = 1_[ F‘sl (Xl) (38)
i=1

Inserting Eq. (38) into Eq. (35), we have the following three-term recurrence
relation

\/[ni +1](1— Wi 1AL — g2)g?") Pi 11 — 2Rewi)q”" P,



Unitary Operator of sug(n)-Covariant Oscillator Algebra 1977

+/IMI(L - 1w (1 — g2)g22) By Ly = x; P, (39)

Relation (29) again generates a certain system of orthogonal polyndnjals
which is a kind of deformation of an ordinary Hermite polynomial depending on
the parametex;. It is worth nothing that the family of polynomiaB(x;; w;) is
isospectral, i.e. the spectruxndoes not depend on the parametgisince

¥ =UW)y. (40)
In the classical limig — 1, we have
Pi(xi;Wi) = Hy, (i + 2Re(w;)), (41)

which implies that the unitary transforbh(w) is a shift of the force center of the
oscillator.

To conclude, in this paper, | have studied two typesg-@oherent states of
Suq(n)-covariant oscillator algebra. One was the Glauber-typ®herent state
and another the Perelomov-typecoherent state. In order to obtain the correct
form of g-coherent states, | found out the unitary operatorsigy(n)-covariant
oscillator algebra. Asis different from the classi@pH> 1) case, the Glauber-type
g-coherent state is not a coherent state in the ordinary sense because it is not an
eigenstate of annihilation operator. It comes from the fact that the step operators
of this algebra are noncommutative among themselves and that | used ordinary
complex (nofg-commuting) variables as coherent variables.
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